a2 United States Patent

US009483399B2

10) Patent No.: US 9,483,399 B2

Hulbert et al. 45) Date of Patent: Nov. 1, 2016
(54) SUB-OS VIRTUAL MEMORY (56) References Cited
MANAGEMENT LAYER
U.S. PATENT DOCUMENTS
(75) InVentOI‘S Jared E HUIbert5 Shlngle Sprlngs5 CA 2007/0016693 Al * 1/2007 GOOdrlCh """"""""""" 709/247
(US); Hongyu Wang, Shanghai (CN) 2007/0192549 AL* 82007 Oh .cccoocccrrren. ~ 711/154
2010/0115191 A1* 5/2010 Hampel et al. 711/103
(73) Assignee: Micron Technology, Inc., Boise, ID
Us) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Kjelso, Gooch, and Jones, Performance evaluation of computer
patent is extended or adjusted under 35 architectures with main memory data compression, Journal of
Systems Architecture, vol. 45, pp. 571-590, 1999.*
US.C. 154(b) by 52 days. Saastamoinen, Saastamoinen, and Nurmi, “Code Compression in
DSP Processor Systems”, International Journal of Embedded Sys-
(21) Appl No.: 12/650,952 tems, vol. 3, No. 4, 2008.%
(22) Filed: Dec. 31, 2009 * cited by examiner
(65) Prior Publication Data Primary Examiner — Michael Alsip
(74) Attorney, Agent, or Firm — Dorsey & Whitney LLP
US 2011/0161550 Al Jun. 30, 2011 57) ABSTRACT
(51) Int.ClL A binary memory image in system is modified. The system
GO6F 12/08 (2016.01) may or may not already have virtual memory management
(52) US. CL enabled. Virtual memory management is enabled and/or
CPC ..o GOGF 12/08 (2013.01); GOGF 2212/407 ™medified by inserting a sub-OS virtual memory management
’ (2013.01) layer in the binary memory image. Part of the binary
(58) Field of Classification Search memory image may be compressed to make room for the

CPC ..ocvvvvreriineerea GOG6F 12/08; GOG6F 2212/401
See application file for complete search history.

sub-OS virtual memory management layer.

10 Claims, 5 Drawing Sheets

5107 guues 519 R
BULDTOOLS o N
e \
500\ e 000 \
20071 mem ace R VAN PN
Q0000 —
i T | &S]
560 <1 - -
COMPUTER
830 7
53\2 S
SUB-0S LAYER WAGE NEW NVMEM
BINARIES BULDER IVAGE WITH SUB-
S 0 VM LAYER
520 N
400

f

COMPUTER-
540 -1 READABLE
MEDIUM

U.S. Patent Nov. 1, 2016 Sheet 1 of 5 US 9,483,399 B2

RTOS SYSTEM NOT MAKING USE OF MM HARDWARE

100 A PROCESSOR RAM - 110
UNUSED MEMORY
MANAGEMENT HW
‘\ NONVOLATILE 120
o > MEMORY
FIG. 1
NONVOLATILE MEMORY IMAGE
BOOT CODE
CODE
FILE SYSTEM

200

FIG. 2

U.S. Patent Nov. 1, 2016

Sheet 2 of 5

COMPRESS CODE TO MAKE
SPACE FOR VM COMPONENTS

L~ 310

INSERT VM CODE IN IMAGE

L~ 320

FIG. 3

RESERVE SPACE IN IMAGE FOR
VM PAGING REGION

L~ 330

MODIFY ABORT VECTORS TO
EXECUTE VM CODE

L~ 340

LOAD MODIFIED IMAGE IN
NONVOLATILE MEMORY

L~ 350

NONVOLATILE MEMORY IMAGE

US 9,483,399 B2

BOOT CODE

COMPRESSED CODE

VM CODE

VM PAGING REGION

FILE SYSTEM

FIG. 4

US 9,483,399 B2

Sheet 3 of 5

Nov. 1, 2016

U.S. Patent

WNIGIN
Jgvavy L 0§
-431NdIN0D
007 2
\ 0¢S
HIAVTIA SO A
-9NS HLIM FOYNI 43qing |, STYYNIg
WINAN M3N ERL ¥3A¥750-9NS
o Y
) 454
L~ (066
d31NdN0D
L~ (096
\ /
L IVAIII T BN | 0
05\ ___] w0 |7 ™\
\ 000 - - 00S
\ \\
\ Vs
\ <
AN 7 .
~ < Us §7001 @1ing - 018 ¢ DI

////:lVA\\\ S0

U.S. Patent Nov. 1, 2016 Sheet 4 of 5 US 9,483,399 B2

(ABORT VECTORS 610
.
[J
NEW 4
VM CODE
NEW VM FAULT HANDLERS 620
\ :
CODE IN ORIGINAL ISRs 630
[J
ORIGINAL IMAGE) .
FIG. 6
NEW VM FAULT 710
HANDLER / 700
720
FAULT RELATED N
TO SUB-0S VM?
A 4
730 VMOPERATIONS JUMPTOORIGINAL | _ 0
E.G. LOAD PAGE ISR -~

750

CONTINUE WITH
ORIGINAL ISR?

END FIG. 7

US 9,483,399 B2

Sheet 5 of 5

Nov. 1, 2016

U.S. Patent

A

009 A AHON3N FTLY TOANON
(9SYFHONI
008
vy a30na3d

L~ 608

A

A 4

§ DIA
28
)
{

YIAYTIA - 048 o
$0-GNS A9 GISN MH 4
INFWFOYNYIN ASONTN

PR =5 Y= 1T
0SS390Yd $STTIIM

008

098

US 9,483,399 B2

1
SUB-OS VIRTUAL MEMORY
MANAGEMENT LAYER

FIELD

The present invention relates generally to computer sys-
tems, and more specifically to virtual memory in computer
systems.

BACKGROUND

Many relatively simple electronic systems do not use
virtual memory. For example, an inexpensive mobile phone
may have a real-time operating system (RTOS) that maps all
available physical memory directly into the virtual memory
space of a processor. This is a simple solution that decreases
the complexity of the system as compared to systems that
incorporate virtual memory.

Since non-virtual memory systems have a “flat” memory
map and do not swap pages of memory between different
memory types, they typically include enough random access
memory (RAM) to support the largest expected RAM
requirement while the system is operating, whereas virtual
memory systems can include less RAM since some memory
contents may be paged out to nonvolatile memory. Tradeoffs
are made between the cost of extra RAM and the cost of
adding virtual memory capability to the system.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like reference numerals indicate
similar elements and in which:

FIG. 1 shows an electronic system with unused memory
management hardware;

FIG. 2 shows a nonvolatile memory image;

FIG. 3 shows a flow diagram in accordance with various
embodiments of the present invention;

FIG. 4 shows a nonvolatile memory image in accordance
with various embodiments of the invention;

FIG. 5 shows a process flow for adding a sub-OS virtual
memory management layer to an electronic system in accor-
dance with various embodiments of the present invention;

FIG. 6 shows modified abort vectors pointing to sub-OS
virtual memory fault handlers;

FIG. 7 shows a flow diagram of a method representing
operation of a sub-OS virtual memory fault handler in
accordance with various embodiments of the present inven-
tion; and

FIG. 8 shows an electronic system in accordance with
various embodiments of the present invention.

DESCRIPTION OF EMBODIMENTS

In the following detailed description, reference is made to
the accompanying drawings that show, by way of illustra-
tion, specific embodiments in which the invention may be
practiced. These embodiments are described in sufficient
detail to enable those skilled in the art to practice the
invention. It is to be understood that the various embodi-
ments of the invention, although different, are not necessar-
ily mutually exclusive. For example, a particular feature,
structure, or characteristic described herein in connection
with one embodiment may be implemented within other
embodiments without departing from the spirit and scope of
the invention. In addition, it is to be understood that the

10

15

20

25

30

35

40

45

50

55

60

65

2

location or arrangement of individual elements within each
disclosed embodiment may be modified without departing
from the scope of the invention. The following detailed
description is, therefore, not to be taken in a limiting sense,
and the scope of the present invention is defined only by the
appended claims, appropriately interpreted, along with the
full range of equivalents to which the claims are entitled. In
the drawings, like numerals refer to the same or similar
functionality throughout the several views.

Many embedded processors include memory manage-
ment hardware that does not necessarily get used. An
example of such a system is shown in FIG. 1. Processor 100
includes unused memory management hardware 102. Ran-
dom access memory (RAM) 110 and nonvolatile memory
120 are memory mapped directly in the memory space of
processor 100. An example nonvolatile memory image is
shown in FIG. 2. The memory image 200 includes execut-
able code including boot code, and a file system. In opera-
tion, processor 100 accesses the file system in the nonvola-
tile memory 120, and uses the RAM 110 for temporary
storage. Code is executed either from RAM 110 after being
copied there from nonvolatile memory 120 or directly from
nonvolatile memory 120.

FIG. 3 shows a flow diagram of a method in accordance
with various embodiments of the present invention, and FIG.
4 shows a nonvolatile memory image that results when the
method of FIG. 3 operates on the nonvolatile memory image
shown in FIG. 2. Method 300 is used to modify a binary
image from an electronic system. For example, the binary
image may come from nonvolatile memory in a mobile
phone, a set-top box, a network router, a global positioning
system (GPS) receiver, or any other electronic system.

In some embodiments, method 300, or portions thereof, is
performed by a processor executing software that modifies
one or more binary files. Method 300 is not limited by the
particular type of apparatus performing the method. The
various actions in method 300 may be performed in the order
presented, or may be performed in a different order. Further,
in some embodiments, some actions listed in FIG. 3 are
omitted from method 300.

Method 300 begins at block 310 in which executable code
is compressed to make space in the memory image for
virtual memory management components. In some embodi-
ments, only non-boot code is compressed. As shown in FIG.
4, non-compressed boot code and compressed non-boot
code is included in the resulting memory image 400. The
compressed code in FIG. 4 includes the same information as
the code in FIG. 2, but occupies much less space. In some
embodiments, block 310 is omitted. For example, the origi-
nal binary memory image may not completely fill the
nonvolatile memory in the electronic system. In these
embodiments, sufficient room in the memory device may
already exist, and compression may not be performed.

In some embodiments, other parts of the original memory
image are compressed to free space in the memory map.
Executable code is provided as an example candidate for
compression, however any contents within the original
memory image may be compressed without departing from
the scope of the present invention.

At 320, virtual memory management components are
inserted in the binary image. The virtual memory manage-
ment components may include initialization code for the
memory management unit. For example, registers within the
memory management unit may be modified to enable virtual
memory management. The virtual memory management
code may also include fault handlers. For example, the
virtual memory management components may include code

US 9,483,399 B2

3

that runs when a memory fault is encountered. Also for
example, in some embodiments, memory management may
have already been enabled. In these embodiments, the
virtual memory management components may modify the
operation of the memory management unit that is already
enabled.

At 330, space in the binary image is reserved for a paging
region. The space that is reserved may correspond to space
freed by the compression operation, or space that existed in
the original binary image before the compression operation.
In some embodiments, existing free space is utilized and
there is no compression operation. The paging region is used
to store memory pages that are paged out of RAM. The
paging region in the resulting memory image is shown in
FIG. 4. The size of the paging region is not a limitation of
the present invention. For example, the size of the paging
region may be limited by the amount of code compression,
the amount of unused space within the nonvolatile memory
device, or other factors.

At 340, abort vectors are modified in the memory image.
Abort vectors specify the location of fault handlers in the
memory image. Prior to modifying the memory image, the
abort vectors may point to null routines, or may point to the
boot code, because memory faults are not expected since the
memory management unit is not enabled. Different proces-
sors have different numbers of abort vectors. Further, dif-
ferent processors may refer to abort vectors using different
nomenclature, such as “interrupt vectors”. Any number of
abort vectors and any naming convention therefor may be
used without departing from the scope of the present inven-
tion.

At 350, the modified binary image is loaded in nonvolatile
memory in the electronic system. The modified binary image
now includes code that when executed enables and/or modi-
fies virtual memory management, and handles memory
faults and page swaps between RAM and nonvolatile
memory. The code in the original binary (e.g., the operating
system, applications, etc.) operates as before without any
knowledge that virtual memory support in the system has
changed.

Method 300 illustrates adding a virtual memory manage-
ment layer beneath, and without the knowledge of, the
operating system. This is referred to herein as a sub-OS
virtual memory management layer. The sub-OS virtual
memory management layer provides advantages of virtual
memory without increasing the complexity of application
development beyond the original environment.

Method 300 does not require access to source code of the
original OS or the application code that compiled into the
original binary image. Knowledge of the underlying hard-
ware architecture (e.g., abort vector locations) is sufficient.

FIG. 5 shows a process flow for adding a sub-OS virtual
memory management layer to an electronic system in accor-
dance with various embodiments of the present invention.
Process flow 500 includes OS build tools 510 that produce
original nonvolatile memory image 200. As described
above, nonvolatile memory image 200 includes code that
does not make use of memory management units within the
intended electronic system.

In some embodiments, OS build tools 510 may be oper-
ated by a manufacturer of an electronic system that includes
unused memory management hardware. For example, the
manufacturer of mobile phone 560 or the manufacturer of
device 570 may use OS build tools 510 to create nonvolatile
memory image 200. If nonvolatile memory image 200 is
loaded in mobile phone 560 or device 570, then these
systems do not include virtual memory management even

20

30

35

40

45

4

though the underlying supporting hardware exists. In other
embodiments, OS build tools 510 may be operated by a
manufacturer of an electronic system that has memory
management hardware that is used. Regardless of whether
the memory management hardware is used or not, the
various embodiments of the present invention may insert a
sub-OS virtual memory management layer.

As shown at 512 and 514, process flow 500 does not load
the original nonvolatile memory image 200 in any electronic
system. Rather, the process flow continues by modifying the
nonvolatile memory image 200 as described above with
reference to FIG. 3 to add a sub-OS virtual memory man-
agement layer.

Computer 530 includes an image builder component 532.
Image builder component 532 receives the original nonvola-
tile memory image 200 and sub-OS virtual memory man-
agement layer binaries 520 and produces a new nonvolatile
memory image with the sub-OS virtual memory manage-
ment layer 400. Image builder component 532 operates as
described above in method 300 by finding or freeing space
in the original nonvolatile memory image and inserting
virtual memory management components including vector
modifications, virtual memory management initialization
code and fault handlers.

Image builder component 532 may be hardware, software,
or any combination. For example, image builder component
532 may be formed when computer 530 executes instruc-
tions stored on machine-readable medium 540. Machine-
readable medium 540 may be any medium capable of
storing instructions. Examples include, but are not limited
to: floppy disks, hard disks, CD-ROMs, and solid state
memory devices.

New nonvolatile memory image 400 includes a sub-OS
virtual memory management layer. The operating system
included by the OS build tools 510 is not aware of the
sub-OS virtual memory management layer. The new non-
volatile memory image 400 is loaded into an electronic
system. For example, and not by way of limitation, memory
image 400 may be loaded in nonvolatile memory in mobile
phone 560 or device 570. Memory image 400 may be loaded
in any type of electronic system without departing from the
scope of the present invention.

In some embodiments, the various actions represented by
process flow 500 are performed by different actors. For
example, a manufacturer of mobile phone 560 may build the
original nonvolatile memory image 200 with the intention of
loading the image in the mobile phone. The manufacturer
does not intend to utilize the memory management hardware
in mobile phone 560, and so opts for the simplicity of the
RTOS development environment without enabling virtual
memory.

A second actor, with or without the manufacturer’s
knowledge, may operate image builder 532 to add the
sub-OS virtual memory management layer. As shown in
FIG. 5, in some embodiments, the second actor may have
access to the original nonvolatile memory image prior to
being loaded in the electronic system. In other embodiments,
the second actor may read the original nonvolatile memory
image from the electronic device. For example, the original
nonvolatile memory image 200 may be read from mobile
phone 560 or device 570 prior to operations being performed
by image builder 532.

FIG. 5 shows two examples of electronic systems: a
mobile phone and a generic device. Any type of electronic
system may be incorporated in process flow 500 without
departing from the scope of the present invention. For
example, device 570 may be a set-top box, a handheld radio,

US 9,483,399 B2

5

a network router, a wireless access point, a GPS receiver, or
any other system with unused memory management hard-
ware that can be utilized by the sub-OS virtual memory
management layer.

FIG. 6 shows modified abort vectors pointing to sub-OS
virtual memory fault handlers. The modified abort vectors
610 and the new virtual memory fault handlers 620 of FIG.
6 are part of the sub-OS virtual memory management
binaries 520 (FIG. 5) that have been added to the nonvolatile
memory image. The abort vectors in the original nonvolatile
memory image have been modified to point to the new
virtual memory fault handlers. The new virtual memory fault
handlers are also shown pointing to code in the original
memory image, but this is not a limitation of the present
invention. For example, in some embodiments, the virtual
memory fault handlers may exit without transferring execu-
tion to any code in the original memory image.

FIG. 7 shows a flow diagram of a method representing
operation of a sub-OS virtual memory fault handler in
accordance with various embodiments of the present inven-
tion. In some embodiments, method 700, or portions thereof,
is performed by an electronic system that has a sub-OS
virtual memory management layer present. The sub-OS
virtual memory management layer may have been added to
the electronic system using the embodiments described
herein. The various actions in method 700 may be performed
in the order presented, or may be performed in a different
order. Further, in some embodiments, some actions listed in
FIG. 7 are omitted from method 700.

Method 700 begins at 710 when a memory fault occurs,
and the fault handler is invoked because of the modified
abort vectors in the new nonvolatile memory image. At 720,
a test is performed to determine whether the fault is related
to the sub-OS virtual memory management layer. In some
embodiments, this may be an address range check. In other
embodiments, there may be flags or registers in the proces-
sor that can be checked to determine whether the fault is
related to the sub-OS virtual memory management layer.

If the fault is not related to the sub-OS virtual memory
management layer, then processing either ends or is trans-
ferred to the original interrupt service routine 740 using the
original abort vector values. In some embodiments, the
original interrupt service routine 740 may be a form of
virtual memory management. In other embodiments, inter-
rupt service routine 740 may not have any function at all. If
the fault is related to the sub-OS virtual memory manage-
ment layer, then processing continues at 730 where virtual
memory operations are performed. Any suitable operation
may be performed at 730. For example, a load operation may
be performed in which a memory page is loaded from
nonvolatile memory to volatile memory. Also for example,
contents cached in RAM that are destined for a file system
in nonvolatile memory may be written down to the non-
volatile memory. The various embodiments of the invention
are not limited by the type of virtual memory operations
performed at 730.

At 750, method 700 determines whether to continue by
transferring control to the original interrupt service routine
740 or by ending. In some embodiments, this is a hard-coded
decision that is a function of the purpose of the original
interrupt service routine. In embodiments where the original
interrupt service routine does nothing or reboots the system,
then the decision at 750 may be hard-coded to always end.
In other embodiments, the decision is made by some other
criteria.

FIG. 8 shows an electronic system in accordance with
various embodiments of the present invention. System 800

10

15

20

25

30

35

40

45

50

55

60

65

6

may be any type of system that includes a memory man-
agement unit. For example, system 800 may be a mobile
phone with volatile and nonvolatile memory. Also for
example, system 800 may be a global positioning system
(GPS) receiver, a set-top box, a network router, a wireless
access point, or a portable media player with volatile and
nonvolatile memory. System 800 may be any type of device
without departing from the scope of the present invention.

In some embodiments, system 800 has a wireless inter-
face 840. Wireless interface 840 is coupled to antenna 850
to allow system 800 to communicate with other over-the-air
communication devices. As such, system 800 may operate as
a cellular device or a device that operates in wireless
networks such as, for example, Wireless Fidelity (Wi-Fi)
that provides the underlying technology of Wireless Local
Area Network (WLAN) based on the IEEE 802.11 specifi-
cations, WiMax and Mobile WiMax based on IEEE 802.16-
2005, Wideband Code Division Multiple Access
(WCDMA), and Global System for Mobile Communica-
tions (GSM) networks, although the present invention is not
limited to operate in only these networks. It should be
understood that the scope of the present invention is not
limited by the types of, the number of, or the frequency of
the communication protocols that may be used by system
800. Embodiments are not, however, limited to wireless
communication embodiments. Other non-wireless applica-
tions can use the various embodiments of the invention.

System 800 includes processor 810 coupled to interface
805. Interface 805 provides communication between pro-
cessor 810 and the various other devices coupled to interface
805. For example, processor 810 may communicate with
RAM 820 and nonvolatile memory 830. Interface 805 can
include serial and/or parallel buses to share information
along with control signal lines to be used to provide hand-
shaking between processor 810 and the various other
devices coupled to interface 805.

Processor 810 may be a standalone processor available
off-the-shelf. In other embodiments, processor 810 may be
a synthesizable core such as those available from ARM Ltd.
For example, the processor may be an ARM926EJ-S™
available from ARM Ltd. In some embodiments, the entire
(or a majority) of the system may be implemented in a chip
set. For example, in some embodiments, the system may
include one of Agere’s TrueNTRY™ solutions, such as the
Agere X125 chip set.

Processor 810 includes a memory management unit 812
that is enabled and operated by a sub-OS virtual memory
management layer. The sub-OS virtual memory manage-
ment layer is incorporated in the nonvolatile memory image
within nonvolatile memory 830 using any of the embodi-
ments described herein.

Random Access Memory (RAM) 820 is shown as
“reduced” because the amount of RAM in the system may
be less than that required before adding the sub-OS virtual
memory management layer. Nonvolatile memory 830 is
shown as increased because, in some embodiments, the
amount of nonvolatile memory 830 is increased over the
amount present in the system prior to adding the sub-OS
virtual memory management layer. Because RAM is gen-
erally more expensive than nonvolatile memory, the savings
resulting from reduced RAM more than offsets the cost of
adding nonvolatile memory to support virtual memory.
Accordingly, various embodiments of the present invention
allow a system to be upgraded to a virtual memory system,
thereby saving the cost of additional RAM, while still
allowing the simplicity of design of an RTOS system with-
out virtual memory enabled.

US 9,483,399 B2

7

Although system 800 is described as having an increased
amount of nonvolatile memory and a decreased amount of
RAM, this is not a limitation of the present invention. For
example, system 800 may be the exact same hardware
system that was intended to originally operate with a non-
volatile memory image that did not support virtual memory.
In these embodiments, a new nonvolatile memory image
that includes a sub-OS virtual memory management layer is
loaded into the same system.

Nonvolatile memory 830 may be any type of nonvolatile
memory. For example, nonvolatile memory 830 may be
phase change memory (PCM), NOR FLASH memory,
NAND single level cell (SLC) memory, or NAND multi-
level cell (MLC) memory. These memory types are listed as
examples, and this list is not meant to be exclusive. For
example, some embodiments may include Ovonic Unified
Memory (OUM), Chalcogenide Random Access Memory
(C-RAM), Magnetic Random Access Memory (MRAM),
Ferroelectric Random Access Memory (FRAM), or others.

In some embodiments, processor 810 may include more
than one core, and each core may include memory. For
example, a first core may include volatile or nonvolatile
memory such as PCM, FLASH, or RAM. Each core may
include any combination of different types of memory
without departing from the scope of the present invention.
Processor 810 may execute instructions from any suitable
memory within system 800. For example, any of the
memory devices within system 800 may be considered a
computer-readable medium that has instructions stored that
when accessed cause processor 810 to perform embodiments
of the invention.

Processor 810 also includes memory management unit
(MMU) 812. In some embodiments, MMU 812 is a separate
device. Memory management unit 812 is a hardware device
or circuit that is responsible for handling accesses to
memory requested by processor 810. As described above,
MMU 812 is enabled and operated by the sub-OS virtual
memory management layer that is added to the system.

Unless specifically stated otherwise, as apparent from the
preceding discussions, it is appreciated that throughout the
specification discussions utilizing terms such as “monitor-
ing,” “storing,” “detecting,” “using,” “identifying,” “mark-
ing,” “receiving,” “loading,” “reconfiguring,” ‘“formatting,”
“determining,” or the like, refer to the action and/or pro-
cesses of a computer or computing system, or similar
electronic computing device, that manipulate and/or trans-
form data represented as physical, such as electronic, quan-
tities within the computing system’s registers and/or memo-
ries into other data similarly represented as physical
quantities within the computing system’s memories, regis-
ters or other such information storage, transmission or
display devices.

Embodiments of the invention may include apparatuses
for performing the operations herein. An apparatus may be
specially constructed for the desired purposes, or it may
comprise a general purpose computing device selectively
activated or reconfigured by a program stored in the device.
Such a program may be stored on a storage medium, such as,
but not limited to, any type of disk including floppy disks,
optical disks, compact disc read only memories (CD-
ROMs), magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), electrically
programmable read-only memories (EPROMs), electrically
erasable and programmable read only memories (EE-
PROMs), magnetic or optical cards, or any other type of

2 < 2 <

2 <

25

30

35

40

45

50

8

media suitable for storing electronic instructions, and
capable of being coupled to a system bus for a computing
device.
Various general purpose systems may be used with pro-
grams in accordance with the teachings herein, or it may
prove convenient to construct a more specialized apparatus
to perform the desired method. The desired structure for a
variety of these systems appears in the description above. In
addition, embodiments of the invention are not described
with reference to any particular programming language. A
variety of programming languages may be used to imple-
ment the teachings of the invention as described herein. In
addition, it should be understood that operations, capabili-
ties, and features described herein may be implemented with
any combination of hardware (discrete or integrated circuits)
and software.
Although the present invention has been described in
conjunction with certain embodiments, it is to be understood
that modifications and variations may be resorted to without
departing from the scope of the invention as those skilled in
the art readily understand. Such modifications and variations
are considered to be within the scope of the invention and
the appended claims.
What is claimed is:
1. A method comprising:
compressing at least a portion of a binary image to create
free space in the binary image, wherein the binary
image comprises a real-time operating system that is
not configured to utilize virtual memory management;

inserting virtual memory management components into
the free space in the binary image, wherein the virtual
memory management components are configured to
modify registers within a memory management unit of
a processor executing the real-time operating system to
enable virtual memory management, generate one or
more virtual memory fault handlers in the binary
image, wherein the virtual memory fault handlers are
executed responsive to detecting a page fault, and
modify one or more abort vectors of the binary image
to point to a first virtual memory fault handler; and

storing the modified binary image in the nonvolatile
memory,

wherein the modified binary image is configured to utilize

the memory management unit without accessing the
real-time operating system.
2. The method of claim 1 wherein compressing comprises
compressing executable code.
3. The method of claim 1 further comprising reserving at
least a portion of the free space for virtual memory pages.
4. A method comprising:
generating a binary image, wherein the binary image
comprises a real-time operating system that is not
configured to utilize virtual memory management;

compressing at least a portion of the binary image to
create space in the binary image for memory manage-
ment components in a nonvolatile memory, wherein the
memory management components are configured to
modify registers within a memory management unit of
a processor executing the real-time operating system to
enable virtual memory management, generate one or
more virtual memory fault handlers in the binary
image, wherein the virtual memory fault handlers are
executed responsive to detecting a page fault, and
modify one or more abort vectors of the binary image
to point to a first virtual memory fault handler;

inserting the memory management components in the
space in the binary image; and

US 9,483,399 B2

9

storing the binary image in nonvolatile memory in an

electronic device

wherein the memory management components do not

access to the portion of the binary image.

5. The method of claim 4, wherein the electronic device
comprises a mobile phone.

6. The method of claim 4, wherein the electronic device
comprises a set-top box.

7. The method of claim 4, wherein the electronic device
comprises a network router.

8. A non-transitory computer-readable medium having
instructions stored thereon that when accessed result in a
device performing:

reserving space in a binary image from a non-virtual

electronic system responsive, at least in part, to com-
pressing at least a portion of the binary image, wherein
the binary image comprises a real-time operating sys-
tem that is not configured to utilize virtual memory
management;

inserting virtual memory management components into

the reserved space in the binary image, wherein the
virtual memory management components are config-
ured to modify registers within a memory management

10

15

20

10

unit of a processor executing the real-time operating
system to enable virtual memory management, gener-
ate one or more virtual memory fault handlers in the
binary image, wherein the virtual memory fault han-
dlers are configured to handle memory faults and page
swaps between random access memory and a non-
volatile memory in response to a page fault, and modify
one or more abort vectors of the binary image to point
to a first virtual memory fault handler; and
loading the binary image with the virtual memory man-
agement components in the electronic system
wherein the virtual memory management components do
not access the portion of the binary image.
9. The non-transitory computer-readable medium of claim
8 wherein inserting virtual memory management compo-
nents into the reserved space in the binary image further
comprises modifying abort vectors to point to the memory
fault handlers.
10. The non-transitory computer-readable medium of
claim 8 wherein compressing at least a portion of the binary
image comprises compressing non-boot code.

#* #* #* #* #*

